A master-model approach to whole jet engine analysis and design optimization

نویسندگان

  • Marcus Sandberg
  • Michael Kokkolaras
  • Jan-Olov Aidanpää
  • Ola Isaksson
  • Tobias Larsson
چکیده

1. Abstract Novel jet engine concepts and architectures are being explored to reduce mass, fuel consumption, development cost and environmental impact while increasing performance. Although the engine systems development process of the next generation aero engines takes place at the original equipment manufacturer level, component manufacturers need to optimize their components using an integrated engine system design approach. Therefore, they need the capability to model and simulate whole engine behavior. While modeling and simulation are traditional strengths of the aerospace industry, model integration of the whole engine system and its components, as well as between separate disciplines, is still a relatively weak link. This paper presents a master-model approach that facilitates integrated analysis used in design optimization. The master-model approach promotes the existence of a single governing version of the product definition, including associated versions of loads, materials, interfaces, constraints etc. A simple yet illustrative industry application is presented where dynamics and displacement analysis are performed using the master model and a parameter study is performed to find an optimal design. The presented scenario investigates the impact of changing the bearing position of the turbine rear frame of a turbo-fan engine considering the load case of a “fan blade off” event. 2.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ROBUST FUZZY CONTROL DESIGN USING GENETIC ALGORITHM OPTIMIZATION APPROACH: CASE STUDY OF SPARK IGNITION ENGINE TORQUE CONTROL

In the case of widely-uncertain non-linear system control design, it was very difficult to design a single controller to overcome control design specifications in all of its dynamical characteristics uncertainties. To resolve these problems, a new design method of robust fuzzy control proposed. The solution offered was by creating multiple soft-switching with Takagi-Sugeno fuzzy model for optim...

متن کامل

Intelligent Knowledge Based System Approach for Optimization of Design and Manufacturing for Abrasive Water Jet Machining

A water jet machining is an industrial tool capable of cutting a wide variety of materials using a very high-pressure jet of water, or a mixture of water and an abrasive substance. This paper addresses the concept of the Intelligent knowledge base system (IKBS) for optimization of product design and manufacturing process for water jet machining in computer based concurrent engineering environme...

متن کامل

A New Approach to Flow Network Analysis of an Engine Lubrication System

In order to develop more efficient engines, it is essential to optimize the lubrication circuit of the power train systems. In this paper, during an engine design and development process, a network analysis of the engine lubrication system is described in detail. Two elements have been added to the lubrication circuit in the modified engine. These elements are hydraulic lifters and an Anti-d...

متن کامل

Intelligent Knowledge Based System Approach for Optimization of Design and Manufacturing for Abrasive Water Jet Machining

A water jet machining is an industrial tool capable of cutting a wide variety of materials using a very high-pressure jet of water, or a mixture of water and an abrasive substance. This paper addresses the concept of the Intelligent knowledge base system (IKBS) for optimization of product design and manufacturing process for water jet machining in computer based concurrent engineering environme...

متن کامل

Modeling and Multi-Objective Optimization of Stall Control on NACA0015 Airfoil with a Synthetic Jet using GMDH Type Neural Networks and Genetic Algorithms

This study concerns numerical simulation, modeling and optimization of aerodynamic stall control using a synthetic jet actuator. Thenumerical simulation was carried out by a large-eddy simulation that employs a RNG-based model as the subgrid-scale model. The flow around a NACA0015 airfoil, including a synthetic jet located at 10 % of the chord, is studied under Reynolds number Re = 12.7 × 106 a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009